Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Infect Dis ; 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-2319602

ABSTRACT

BACKGROUND: The epidemiological advantage of Omicron variant is evidenced by its rapid spread and the ability to outcompete prior variants. Among Omicron sub-lineages, early outbreaks were dominated by BA.1 while BA.2 has gained dominance since February 2022. The relative pathogenicity and transmissibility of BA.1 and BA.2 have not been fully defined. METHODS: We compared viral loads and clinical signs in Syrian hamsters after infection with BA.1, BA.2, or D614G variant. A competitive transmission model and next generation sequencing were used to compare the relative transmission potential of BA.1 and BA.2. RESULTS: BA.1 and BA.2 caused no apparent clinical signs while D614G caused more than 10% weight loss. Higher viral loads were detected from the nasal washes, nasal turbinate and lungs of BA.1 than BA.2 inoculated hamsters. No aerosol transmission was observed for BA.1 or BA.2 under the experimental condition that D614G transmitted efficiently. BA.1 and BA.2 were able to transmit among hamsters via direct contact; however, BA.1 transmitted more efficiently than BA.2 under the competitive transmission model. No recombination was detected from direct contacts exposed simultaneously to BA.1 and BA.2. CONCLUSIONS: Omicron BA.1 and BA.2 demonstrated attenuated pathogenicity and reduced transmission potential in hamsters when compared to early SARS-CoV-2 strains.

2.
mBio ; 12(5): e0239521, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1406605

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main target for neutralizing antibodies. These antibodies can be elicited through immunization or passively transferred as therapeutics in the form of convalescent-phase sera or monoclonal antibodies (MAbs). Potently neutralizing antibodies are expected to confer protection; however, it is unclear whether weakly neutralizing antibodies contribute to protection. Also, their mechanism of action in vivo is incompletely understood. Here, we demonstrate that 2B04, an antibody with an ultrapotent neutralizing activity (50% inhibitory concentration [IC50] of 0.04 µg/ml), protects hamsters against SARS-CoV-2 in a prophylactic and therapeutic infection model. Protection is associated with reduced weight loss and viral loads in nasal turbinates and lungs after challenge. MAb 2B04 also blocked aerosol transmission of the virus to naive contacts. We next examined three additional MAbs (2C02, 2C03, and 2E06), recognizing distinct epitopes within the receptor binding domain of spike protein that possess either minimal (2C02 and 2E06, IC50 > 20 µg/ml) or weak (2C03, IC50 of 5 µg/ml) virus neutralization capacity in vitro. Only 2C03 protected Syrian hamsters from weight loss and reduced lung viral load after SARS-CoV-2 infection. Finally, we demonstrated that Fc-Fc receptor interactions were not required for protection when 2B04 and 2C03 were administered prophylactically. These findings inform the mechanism of protection and support the rational development of antibody-mediated protection against SARS-CoV-2 infections. IMPORTANCE The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2, has resulted in the loss of millions of lives. Safe and effective vaccines are considered the ultimate remedy for the global social and economic disruption caused by the pandemic. However, a thorough understanding of the immune correlates of protection against this virus is lacking. Here, we characterized four different monoclonal antibodies and evaluated their ability to prevent or treat SARS-CoV-2 infection in Syrian hamsters. These antibodies varied in their ability to neutralize the virus in vitro. Prophylactic administration of potent and weakly neutralizing antibodies protected against SARS-CoV-2 infection, and this effect was Fc receptor independent. The potent neutralizing antibody also had therapeutic efficacy and eliminated onward aerosol transmission. In contrast, minimally neutralizing antibodies provided no protection against infection with SARS-CoV-2 in Syrian hamsters. Combined, these studies highlight the significance of weakly neutralizing antibodies in the protection against SARS-CoV-2 infection and associated disease.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , COVID-19/metabolism , Receptors, Fc/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/prevention & control , Cricetinae , Male , Mesocricetus , Protein Binding
3.
Nature ; 583(7818):834-838, 2020.
Article in English | PMC | ID: covidwho-1387423

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus with high nucleotide identity to SARS-CoV and to SARS-related coronaviruses that have been detected in horseshoe bats, has spread across the world and had a global effect on healthcare systems and economies1,2. A suitable small animal model is needed to support the development of vaccines and therapies. Here we report the pathogenesis and transmissibility of SARS-CoV-2 in golden (Syrian) hamsters (Mesocricetus auratus). Immunohistochemistry assay demonstrated the presence of viral antigens in nasal mucosa, bronchial epithelial cells and areas of lung consolidation on days 2 and 5 after inoculation with SARS-CoV-2, followed by rapid viral clearance and pneumocyte hyperplasia at 7 days after inoculation. We also found viral antigens in epithelial cells of the duodenum, and detected viral RNA in faeces. Notably, SARS-CoV-2 was transmitted efficiently from inoculated hamsters to naive hamsters by direct contact and via aerosols. Transmission via fomites in soiled cages was not as efficient. Although viral RNA was continuously detected in the nasal washes of inoculated hamsters for 14 days, the communicable period was short and correlated with the detection of infectious virus but not viral RNA. Inoculated and naturally infected hamsters showed apparent weight loss on days 6–7 post-inoculation or post-contact;all hamsters returned to their original weight within 14 days and developed neutralizing antibodies. Our results suggest that features associated with SARS-CoV-2 infection in golden hamsters resemble those found in humans with mild SARS-CoV-2 infections.

4.
Vet Pathol ; 59(4): 639-647, 2022 07.
Article in English | MEDLINE | ID: covidwho-1381204

ABSTRACT

Several animal models have been developed to study the pathophysiology of SARS-CoV-2 infection and to evaluate vaccines and therapeutic agents for this emerging disease. Similar to infection with SARS-CoV-1, infection of Syrian hamsters with SARS-CoV-2 results in moderate respiratory disease involving the airways and lung parenchyma but does not lead to increased mortality. Using a combination of immunohistochemistry and transmission electron microscopy, we showed that the epithelium of the conducting airways of hamsters was the primary target for viral infection within the first 5 days of infection, with little evidence of productive infection of pneumocytes. At 6 days postinfection, antigen was cleared but parenchymal damage persisted, and the major pathological changes resolved by day 14. These findings are similar to those previously reported for hamsters with SARS-CoV-1 infection. In contrast, infection of K18-hACE2 transgenic mice resulted in pneumocyte damage, with viral particles and replication complexes in both type I and type II pneumocytes together with the presence of convoluted or cubic membranes; however, there was no evidence of virus replication in the conducting airways. The Syrian hamster is a useful model for the study of SARS-CoV-2 transmission and vaccination strategies, whereas infection of the K18-hCE2 transgenic mouse results in lethal disease with fatal neuroinvasion but with sparing of conducting airways.


Subject(s)
COVID-19 , Respiratory System , Viral Tropism , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/virology , Cricetinae , Disease Models, Animal , Lung/pathology , Mesocricetus , Mice , Mice, Transgenic , Respiratory System/virology , SARS-CoV-2/genetics
5.
Antiviral Res ; 178: 104786, 2020 06.
Article in English | MEDLINE | ID: covidwho-30820

ABSTRACT

An escalating pandemic by the novel SARS-CoV-2 virus is impacting global health and effective therapeutic options are urgently needed. We evaluated the in vitro antiviral effect of compounds that were previously reported to inhibit coronavirus replication and compounds that are currently under evaluation in clinical trials for SARS-CoV-2 patients. We report the antiviral effect of remdesivir, lopinavir, homorringtonine, and emetine against SARS-CoV-2 virus in Vero E6 cells with the estimated 50% effective concentration at 23.15 µM, 26.63 µM, 2.55 µM and 0.46 µM, respectively. Ribavirin or favipiravir that are currently evaluated under clinical trials showed no inhibition at 100 µM. Synergy between remdesivir and emetine was observed, and remdesivir at 6.25 µM in combination with emetine at 0.195 µM may achieve 64.9% inhibition in viral yield. Combinational therapy may help to reduce the effective concentration of compounds below the therapeutic plasma concentrations and provide better clinical benefits.


Subject(s)
Antimetabolites/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Emetine/pharmacology , Homoharringtonine/pharmacology , Lopinavir/pharmacology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Virus Replication/drug effects , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Amides/pharmacology , Animals , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Drug Combinations , Epithelial Cells , Humans , Pandemics , Pyrazines/pharmacology , Ribavirin/pharmacology , SARS-CoV-2 , Vero Cells , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL